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A nonlinear multigrid method is developed for solving the three-dimensional
Navier—Stokes equations in conjunction with the artificial compressibility formu-
lation. The method is based on the full multigrid (FMG)—full approximation stor-
age (FAS)—algorithm and is realized via an “unsteady-type” procedure, accord-
ing to which the equations are not solved exactly on the coarsest grid, but some
pseudo-time iterations are performed on the finer grids and some on the coarsest
grid. The multigrid method is implemented in conjunction with a third-order up-
wind characteristics-based scheme for the discretization of the convection terms,
and the fourth-order Runge—Kutta scheme for time integration. The performance of
the method is investigated for three-dimensional flows in straight and curved channels
as well as flow in a cubic cavity. The multigrid acceleration is assessed in contrast
to the single-grid and mesh-sequencing algorithms. The effects of various multigrid
components on the convergence acceleration, such as prolongation operators, as well
as pre- and postrelaxation iterations, are also investigatgtess Academic Press

Key Wordsmultigrid; Navier—Stokes equations; upwind schemes; artificial com-
pressibility.

1. INTRODUCTION

During the last decade, rapid advances in computer hardware have provided new av
in the numerical simulation of three-dimensional fluid flows. However, even with the us
the most powerful super-computers the CPU requirements for three-dimensional steac
unsteady computations are still very high. Beside the use of parallel computers which :
us to reduce the computing time by increasing the number of processors, multigrid me
have been established as a powerful tool for accelerating the numerical convergenc
thus reducing the computing time.
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The origin of the multigrid method is found in the papers of Fedorenko [1] and Bakhval
[2], and later on in the work of Brandt [3]. To make reference to all past works in connecti
with multigrid methods would be a task for the introduction of a book (e.g. [4, 5]) rather th:
of the present paper. However, it is worth mentioning that most of the developments
applications of multigrid method for incompressible flows are related to elliptic systems
equations and mainly to SIMPLE-type approaches (e.g. @ak[6]). On the other hand,
very few studies have dealt with the development of multigrid methods in conjunction w
the artificial compressibility method (ACM) [7]. The idea of ACM is to introduce a pseudc
temporal equation for the pressure through the continuity equation and, subsequent|
couple the continuity with the momentum equations. Although there exist different impli
and semi-implicit methods for the incompressible Navier—Stokes equations and the pre
authors have experience with such methods, including semi-implicit projection method:
SIMPLE-type and algorithms for vorticity—vector potential formulation of the incompres:
ible Navier—Stokes equations, there are several arguments which justify the use of A
for computing incompressible flows. The most important arguments are: (i) there is
cently an increasing interest to explicit methods since they offer high efficiencies in para
computations, especially in the case of massively parallel computations; (ii) the discr
sation schemes and solvers developed in conjunction with ACM for incompressible flc
have many similarities with the methods developed for compressible flows. Therefore,
computational experience and developments gained from incompressible flows can e
be transferred to compressible flows and vice versa. Since, in many industrial applicat
both the computation of compressible and incompressible flows is sometimes required,
automotive industry, the usage of ACM-based approaches offers a lot of advantages.

Concerning the development of multigrid methods in conjunction with ACM, there a
very few studies in the literature. Farmeral. [8] have developed a multigrid scheme for
the solution of the Euler equations in conjunction with the ACM and applied it to free st
face flows. They reported that 490-multigrid cycles were required to achieve convergence
for the inviscid flow around a ship hull including free surface effects. Sle¢ad) [9] have
developed a multigrid algorithm for 3D incompressible turbulent flows in conjunction wil
the ACM and Newton relaxation methods. They investigated two different approaches
building coarse grid equations as well as the influence of implicit correction smoothing
increasing the stability of the scheme. They reported fast convergence rates for the ca
external flows, but the multigrid efficiency appeared to deteriorate in the case of comf
internal flows. The above multigrid methods were similar to the Jameson’s multigrid pro
dures originally developed for the solution of the compressible Euler equations [10-12] :
later on applied to the compressible Navier—Stokes equations [13, 14]. Lin and Sotiropol
[15] have also recently developed a three-level V-cycle multigrid algorithm in conjunctic
with the ACM using a first-order upwind differencing for the discretization of the cor
vection terms during the coarse grid iterations, while various schemes were implemelr
and tested for the discretization of these terms on the fine grid. They employed the |
scheme proposed by Brandt, starting with an estimate of the solution on the finest grid
performing a fixed number of iterations on the coarser grids.

Other recent contributions in the field of multigrid methods, however, less relevant
the approaches used in this study, include the work by Dailey and Pletcher [16] who |
sented the implementation of multigrid method in conjunction with the precondition:
Navier—Stokes equations for low-Mach number two-dimensional, steady and unste
flows. Lotstedt [17] also investigated three different relaxation procedures, Runge—Ki
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time-stepping, GMRES, and modified GMRES, in conjunction with a multigrid algorith
for solving the steady state Euler equations, while recently Steetaait [18] presented
a theoretical analysis of different implicit methods in multigrid form for the case of Ic
Mach number flows.

The main differences between the present multigrid method and the aforementic
contributions are:

o the combination of the FMG and FAS approaches for solving the artificial compre
ibility formulation of the Navier—Stokes equations. The FMG procedure is used to prov
a good initial approximation before the execution of V-cycles on the fine-grid, but alsc
calculate the basicoarse-grid functionsised in the FAS procedure (see discussion abo
the FAS algorithm in Section 3);

o the implementation of the FMG-FAS in conjunction with a third-order upwind che
acteristics-based scheme [19, 20], the latter being employed for the discretization o
convection terms at all grid levels, and

o the implementation and testing of various prolongation operators in conjunction v
the FAS-FMG procedure, including a new operator, henceforth labeilest-prolongation
which is based on an upwind prolongation in the streamwise direction and bilinear pro
gation in the cross-stream direction.

Subsequently, the objectives of the present study are (i) to develop the FMG-FAS |
linear multigrid method and demonstrate its efficiency in various 3D incompressible flo
(ii) to investigate the effects of various multigrid components on the convergence acce
tion, such as prolongation operators, coarsest-grid iterations, as well as pre- and postr
tioniterations, and (iii) to assess the performance of the method against the mesh-seque
and single-grid algorithms.

The remainder of the paper is organised as follows. In Section 2 the solution methc
presented. The multigrid algorithm is described in Section 3 and the results are pres
in Section 4. Finally, in Section 5 conclusions from the present study are drawn.

2. GOVERNING EQUATIONS AND SOLUTION METHOD

The governing equations and discretization scheme are described in detail in [19,
In this paper the method is briefly presented in order to understand the implement:
of the multigrid algorithm. The governing equations are the Navier—Stokes equation
curvilinear coordinate&s, n, ¢):

QU+ (EDe + (F)y + (G = (Ev)e + (Fv), + (Gy),.
The unknown solution vectd is
U=(p/B.u,v,w),

where p is the pressurey, v, andw are the velocity components; adis the artificial
compressibility parameter.
The inviscid fluxesE,, F|, G, and the viscous fluxeBy, Fy, Gy are written as
Ei = J(Ei&+Fi&y +Gi&)
Fi = JE i+ Finy+Giny)
GI = J(Elfx‘f‘ ﬁlfy"‘ éIé’z)
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Ev = J(Evé + Fvy + Gugy)
Fv = J(Evnx + Fyny + Gyny)
Gv = J(Evix + Fyvey + Guéy),

where the fluxes with “tildes” denote the corresponding Cartesian fluxes:

u v w
2
~ us + ~ uv ~ uw
E| = P s FI = 2 P Gl =
uv v+ p vw
uw vw w? + p
0 0 0
~ o ~ o ~ o
EV — XX , FV — yX , GV — ZX
Oxy Oyy Ozy
Oxz Oyz Ozz

The termsyij (i, j = X, y, 2) are the viscous stresses ahd the Jacobian of the transfor-
mation from Cartesian to generalised coordinates:

J= XE(ynZZ - y{zn) + Xn(y{ZfE - ng;) + Xg‘(yézn - ynzé)~

A characteristics-based method [19, 20] is used for the discretization of the invis
terms. A Riemann solution in each flow direction can be constructed by splitting the invisi
equations into three one-dimensional equations. The primitive varigbles ¢, w) at the
cell faces of the computational volume can then be defined as functions of their val
(P, Ue, v, w,) ONthe characteristics denoted by the subser{pt= 0, 1, 2). For example,
the primitive variables at the cell faceés= const are calculated as

N

U = RX + Up(¥? + %) — voX¥ — woX

V= Rg/ + Uo()?z + 22) — woig/ — UoX

<

w= RZ+ wo(flz + )?2) — voiy — UgXZ
P = p1— Ar(X(U —Up) + Y(v — v1) + Z(w — wy)),

where

1 - - -
R= % (P — P2 + X(A1Uz — AoUp) + Y(A1v1 — Aov2) 4+ Z(Aqw1 — Aw)))

_ /y2 v € _
VRS s g C

In the above formulasy, A1, anda, are the eigenvalues defined by

Ao = UX 4+ vy + wZ,

1)
AM=X+S, Arx=Ap—S.

The characteristic variables are calculated by a third-order upwind scheme,

1 . .
Ui(irl)/z,x =5 ((1 + Slgr()‘K))Ui(Jlr)l/Z +@A- S'Qn()w))ui(rl/z)’
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where

Ui(_lﬁ;_)/zq,( = (p;m Ue, U, wK)T
0} 1
U1 = 6(5Ui —Ui_1+2Ui41)

1
Uz = 58U = Ui + 200
The viscous terms are discretized by central differences and the time integration is obt:

by an explicit Runge—Kutta method,

u® =un
U@ =u"- % N(U®)
Uu® =u"— % N(U®@)

U@ =U"—- AtN(U®)

% [IN(U®) +2N(UP) +2N(U®) + N(UD)],

Un+l — Un _
wheren is the previous time level artd comes from rewriting the Navier—Stokes equation
in the form:

(JU); + N(JU) = 0.

The local time step\t varies between the four Runge—Kutta stages and is defined by

(— CFL
- maX{um}’
m

)

wherepwm = max{(|A1l, [A2])/xZ + xy2 + x2},m(m=1,2,...,6)isthe volume cell-face
pointer,1; andx, are the eigenvalues (see Eq. (1)) at the cell faces,yasthnds either
for &, n, or¢. Thus, the local time stefit depends on the grid and flow velocities. A CFL
number of 05 was used in all calculations.

3. MULTIGRID ALGORITHM

To accelerate the convergence of the single-grid Navier—Stokes method presented
preceding section, full multigrid-full approximation storag¢FMG-FAS) algorithm has
been developed. As discussed in the introduction, the multigrid method is amongst the
popular approaches for accelerating fluid flow computations. Although the method
originally suggested for solving elliptic flow problems, it has also been successfully imy
mented in other cases, such as hypersonic flows [21]. However, little experience has
acquired so far from its implementation in conjunction with the artificial compressibili
formulation [8, 9, 15].

In the present work various prolongation operators have been implemented and te
Some of the prolongation operators used here, e.g. upwind prolongation, cannot be us
conjunction with elliptic systems of equations. In the present work a three-level multic
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1 stage 1I stage III stage

FIG.1. Schematic of the full multigrid (FMG) for three grids. I. Single grid computation on the coarsest gri
1. Two-level multigrid computation on the intermediate grid; Ill. Three-level multigrid computation on the fine:
grid.

has been developed. There are several reasons for the choice of the sekzatiedultigrid
and among them are:

o the coarsest-grid leveshould have a sufficient number of grid points to provide &
good correction onto the fine grid. Numerical experiments have shown that in the ¢
of very coarse grids the efficiency of the multigrid is significantly reduced. This has al
been observed in theoretical investigations of multilevel algorithms for nonsymmetric (s
e.g. [22, 23] and references therein) and nonlinear problems (see, e.g. [24] and refere
therein);

o short-multigridalgorithms are more efficientin parallel computations, as demonstrat
in previous studies b;&lund et al.[25] and Axelsson and Neytcheva [26, 27];

o finally, it should be pointed out that the use of several grid levels increases the cc
plexity of the computer code and memory requirements. If calculations on very fine gr
are required, an alternative strategy could be to solve the equations sequentially on se
three grids. In this case the initial condition, as well asdbarse-gridfunctions (see also
the discussion about the FAS algorithm in this section), can be obtained by the solution:
the previous set of three grids.

The three-level FMG-FAS algorithm is schematically shown in Figs. 1 and 2, while tl
basic steps are listed below:

Auxiliary stage I—single grid solution

Ucg:=Ng,'Ocg compute coarsest grid solution
Ui% =PUy prolongation—initial guess on the intermediate grid

FIG. 2. Schematic of the V-cycle.
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Auxiliary stage ll—multigrid sweeps on two grids

repeat
Uig:=Sg(Uig, Oig, v1) v1 prerelaxation iterations
dig := NigUig compute intermediate grid defect
deg := Rd,g restriction of the defect to the coarsest grid
fogi=—0Ocg + Ncg\7Cg compute right-hand side on the coarsest grid
Veg:= Nc—g1 feg compute coarsest grid approximate solution
Ceg :=Veg — Vg compute correction on the coarsest grid
Cig := Pty prolongation of the correction to the intermediate grid
Uig :=Uig + Cig correct solution on the intermediate grid

Uig:=Sg(Uig, Oy, v2) v postrelaxation iterations
until the steady state solution on the intermediate grid is achieved
U ?g :=PUg prolongation—initial guess on the finest grid

Stage lll—multigrid sweeps on three grids (V-cycles)

repeat
Utg:=Sig(Usg, Otg, v1) v1 prerelaxation iterations
dfg :=NygU1qg compute finest grid defect
dig :=Rdig restriction of the defect to the intermediate grid

fig :==—dig + Nig\zg compute right hand side on the intermediate grid
Vig :=8i(Vig, fig. v1)  v1 prerelaxation iterations

dig :=— fig + NigVig compute intermediate grid defect

deg :=Rdg restriction of the defect to the coarsest grid

fog i=—0eg + Ncg\7Cg compute right hand side on the coarsest grid
Veg i= Nc‘g1 feg compute coarsest grid approximate solution
Ceg :=Veg — Vg compute correction on the coarsest grid

Cg :=Pcy prolongation of the correction to the intermediate grid
Vig :=Vig + Gig correct solution on the intermediate grid

Vig ;=8¢ (Vig, fig, v2) v postrelaxation iterations

Cig :=Vig — \7ig compute correction on the intermediate grid
Ctg :=PGg prolongation of the correction to the finest grid
Utg:=Utg+Cig correct solution on the finest grid

Utg:=Sig(Usg, Otg, v2) v postrelaxation iterations
until the steady state solution on the finest grid is achieved

The components of the above full multigrid—full approximation storage (FMG-FA
algorithm are discussed below.

1. Full Multigrid (FMG)

According to the FMG approach, computations are initially performed on the coar:
grid in order to provide a good initial guess for the intermediate grid. The same procedu
repeated on the intermediate grid in order to provide a good initial guess for the finest «
Thus, FMG for three grids can be divided into three stages: two auxiliary stages, w|
the steady state coarsest and intermediate grid solutions are computed, and the mair
where multigrid sweeps on three grids are performed.
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2. Full Approximation StoragéFAS

This algorithm was first proposed by Brandt (see [3] and discussion in [4, 5]) due to 1

nonlinearity of the problem. In the present work the FMG is combined with FAS. As know
for linear problems a correction of the solution on the fine grid can be directly computed
coarser grids using the same solution matrix with the right-hand sides of the equations b
therestricted defectHowever, this is not the case when nonlinear problems are solved. F
nonlinear problems the multigrid corrections are formed as differences between some b
reference solution and the currently computed approximation of this solution. That is w
the three-grid FAS algorithm requires the calculation of the so-catledse-gridfunctions.
In the case of the three-level multigrid these functions need to be defined for the coars
\709, and intermediate gridsz-g, respectively. In the original Brandt's algorithm (henceforth
labelled FAS-1) these functions are computed as projections of the current intermediate
finest grid solutions onto the coarsest and intermediate grids, respectively,

Veg = RVg, Vig = RUsg

whereRis the restriction operator. Another approach (henceforth labelled FAS-2) is realiz
here; the computed, via the FMG, steady state coarsest and intermediate grid sdligions
andUjg, are used as coarsest and intermediate grid functions in Brandt's FAS algoritf
Veg = Ucg, Vig = Uig.

Several numerical experiments were performed during the development of the pre
method and showed that the above implementation improves the performance of the m
grid algorithm in the case of fine grids and, additionally, this performance was retair
for all flow cases and grids used. The effects of the coarse grid function on the multig
acceleration are demonstrated in the results section for cavity flow calculations.

3. Relaxation Procedure

The single-grid algorithm described in Section 2 is used as relaxation procegiye, (
Sg) and coarsest-grid solver. It should be noted that the Navier—Stokes solver used or
coarsest and intermediate grids is slightly different than the original single-grid solver. T
is due to the fact that the right-hand side of the Navier—Stokes equations is identically 2
inside the domain only in the case of the single-grid algorithm. In the case of the multig
method the right-hand side of the equations on the coarsest and intermediate grids i
zero, due to the additional terms arising from the FAS linearization procedure.

4. Intergrid Transfer Operators

The restriction operator for the residuals is obtained by the volumes’ weighted summat
of the residuals over the fine-grid control volumes (CVs) which subsequently form t
current coarse-grid CVs. The present implementation of the multigrid algorithm is ba:s
on the assumption that any coarse-grid CV consists of eight fine-grid CVs. In the cas
simple geometries the original domain is covered by a coarse grid and this grid is furt
refined in such a way that any coarse-grid volume is split into eight fine-grid volumes. F
complex geometries it is, however, suggested to first generate the finest grid, and the
construct the coarser grids by eliminating lines of the fine grid.

Various prolongation operators have been employed. For the sake of simplicity th
operators are described below for the case of uniform grids. However, in the case of
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2i—1 24 i+1

FIG. 3. Schematic of the linear prolongation in 1D caegecoarse-grid CVj, fine-grid CV.

bilinear and trilinear prolongation on nonuniform grids, geometrical factors (grid-weigh
averages) such as the distances between grid nodes, have been taken into account.
denote byJ f andU ¢ the values of the variablé on the fine and coarse grids, respectively
For one-dimensional problems, the fine-grid cells with indi@s- 1) and(2i) will form
a coarse-grid cell denoted by the indéx

The simplest definition of the prolongation operator is the linear interpolation (see :
Fig. 3):

1 3

f

Uy = ZUic+1 + Z_Uic
.3 1

a1 = ;U + U

For two- and three-dimensional cases, bilinear or trilinear prolongation formulas ca
obtained by combining 1D linear interpolation. A schematic of the bilinear interpolati
for the two-dimensional case is shown in Fig. 4, while for the three-dimensional case
prolongated value onto a fine-grid cell with india@s, 2], 2k) is given by:

1 3 3 3
f
Ui oj ok = &Uiil,j-&-l,m—l + @Uicﬂ.jﬂ,k + @Uicﬂ,j,kﬂ + @Ui?j+l,k+l

9 9 27
+ @Uicﬂ,j,k + @Ufjﬂ.k + &Ui(,:j,m—l + @Uic,j.lc

O O
1/4 1/4
/jélﬂéf 1/4
o )
3/4 3/4

FIG. 4. Schematic of the bilinear prolongation in 2D caegecoarse-grid node, fine-grid node.
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FIG.5. Schematic of the piece-wise constant prolongation in 1D case.

Another prolongation operator tested in this study is the piece-wise constant prolongat
For the 1D case this operator is defined as (see also Fig. 5)
f
Up_y =Uf
f
Uy =Uf

while for a three-dimensional problem the operator is written as

f f f f
U2i—1,2j—1,2k—1 = U2i—1,2j—1,2k = U2i—1.2j,2k—1 = U2i—1,2j,2k
o f 0 f 0 f o f _1c
= U2i,2j71,2k71 = U2i,2jfl,2k = U2i,2j,2k71 = U2i,2j,2k = Ui,j,k

It should also be pointed out that in contrast to the trilinear prolongation the present pie
wise constant prolongation is not based on grid-weighted averaging. An upwind piece-v
constant prolongation has also been implemented. For the one-dimensional case tt
written as

Uy =Uy,, =U°S foru >0
and
Uy =Ujy,, = U, foru <O,

wherey; is the velocity of the fluid. The above is schematically shown in Fig. 6 for the 2|
case whem; > 0 (the extension in 3D is straightforward).

In addition to the implementation of the trilinear, piece-wise constant and upwind piec
wise constant prolongation, a combination of upwind prolongation in the streamwise dir
tion and bilinear in the cross-stream plane (henceforth labetizgéd-prolongationwas
also implemented and tested. This prolongation is schematically shown in Fig. 7 for the
case whem; > 0.

o0

FIG. 6. Schematic of the upwind piece-wise constant prolongation in 2D case.
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1/4

3/4 1

FIG. 7. Schematic of the mixed-prolongation in 2D case.

5. Coarsest Grid Solution

A multigrid algorithm can be realized by either a “steady-type” or “unsteady-type” pr
cedure. The “steady-type” procedure is similar to that used in multigrid algorithms
elliptic problems. In this case the solution on the coarsest grid is computed almost exe
In the “unsteady-type” multigrid the equations on the coarsest grid are not solved until
convergence is achieved. Similarly to the single-grid solution a pseudo-unsteady proble
solved according to which some of the time steps are performed on the finer grids and o
on the coarsest grid. In the present work an “unsteady-type” multigrid has been develc

4. RESULTS

The performance of the multigrid algorithm was investigated for the following thre
dimensional incompressible flows: (i) the flow development in a straight 3D channe
square cross-section, (ii) flow in a cubic cavity, and (iii) flow in a 3D channel with stro
curvature.

For the channel flow a Reynolds number of 100, based on the centre-line velocity
channel width, is used. The calculations were performed on a single quadrant of the ch:
due to the symmetry. In order to investigate the multigrid performance on different gr
calculations were performed for two cases corresponding to fine grids with siz8%839
(case 1) and 4% 17 x 17 (case 2), respectively. The grid points were slightly clustered
thex-direction near the channel entrance, while the grid was uniform in the other directic
The computed pressure coefficient along the channel centre-line was compared wit
experimental data of Beaveesal.[28] (Fig. 8). The axial development of the streamwis
velocity at the channel centre-line as well as the velocity profilX AtD * Re) =0.02
(D is the channel width) were compared with the corresponding laser Doppler velocim
measurements of Goldstein and Kreid [29] (see also Fig. 8).

The efficiency of the multigrid method was assessed against the mesh-sequencin
single-grid algorithms. According to the mesh-sequencing technique the solution is
obtained on a sequence of coarser grids in order to provide an initial guess for the sol
on the fine grid. One can easily understand that the first auxiliary stage of the FAS-F
method is identical with the mesh-sequencing procedure used for solving the equatiol
the coarsest grid.
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FIG.8. Comparison of the computations with experimental results£R80) for the three-dimensional entry
flow in a rectangular channel: (a) pressure distribution along the centreline; (b) development of the velocity al
the centreline; and (c) streamwise velocity profilegt{Rex D) = 0.02 (grid 58x 39 x 39).

The pressure residual against the corresponding work units is plotted in Fig. 9 for
multigrid (MG), mesh-sequencing (MS) and single-grid (SG) solutions for the case (
while the corresponding work units for the cases (1) and (2) are shown in Table I. T
work units are calculated by taking into account that one relaxation step at the grid le
| is equivalent to 18 ~1 work units of the finest gridl & 1). The pre- and postrelaxation

TABLE |
MG Sweeps and Total Work Units for the 3D
Channel Flow (Three-Level MG)

Grid Method  Work units MG sweeps
58 x 39 x 39 MG 2429 105
MS 32400
SG >67000
42 x 17 x 17 MG 1000 47
MS 9500
SG >19500

Note.Re=100.
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24 ——-- Mesh—sequencing
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FIG. 9. Convergence history for the 3D entry flow in channel (grid589 x 39).

iterations have also been included in the total work units. As can be seen from Table
comparing the SG and MG work units, the MG algorithm offers a significant accelerat
of the computations by a factor of over 30 and 19.5 for the cases (1) and (2), respecti
Comparing to the MS solution the acceleration factor is 13.3 and 9.5 for the cases (1)
(2), respectively. In the case of the SG solution the exact acceleration cannot be estin
since the computation was stopped before the prescribed convergence level is res
The fact that an acceleration over 30 times had already been achieved, provided suff
evidence for the efficiency of the MG algorithm. One can also notice from Table | that
MG sweeps are increasing from case (2) to case (1). This is due to the “unsteady-typ
multigrid implementation. According to the present implementation, the equations are
solved on the coarse grids of the MG cycle up to the final convergence and, therefore
MG sweeps required will not be independent of the grid size. We have found that the al
increases the performance of the MG solver by reducing the total work units, butas a r
the MG sweeps will vary between different grids.

The above computations were performed using the following combination of multig
parametersp; = 0 pre-relaxationsy.g = 100 steps on the coarsest grid, ané= 15 post-
relaxations on each multigrid sweep. In all computations presented in this paper the arti
compressibility parameter was kept constant, equal to 1niiked-prolongatiomwas used
for the velocities after the auxiliary stage of the FMG, while the trilinear interpolation w
used to prolongate the pressure and corrections from the coarse to the fine grid within
multigrid sweep.

Most of the multigrid studies in literature employ the trilinear interpolation as a prolc
gation operator. In some papers the choice of the piece-wise constant prolongation is
used. In general, the trilinear interpolation should be used for second-order derivatives
viscous terms) and the piece-wise interpolation for first-order derivatives (e.g. conve
terms). However, the best choice for the prolongation operator is not obvious, especia
viscous flows where large gradients occur. In the present study four different variants o
prolongation operator were investigated:

1. mixed-prolongatiorfor u, v, andw after the auxiliary stage, trilinear prolongation for
p and corrections;
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TABLE Il
MG Sweeps (Three-Level MG) and Total Work
Units Using Different Prolongation Operators

Type of prolongation MG sweeps Work units
@) 105 2429
) 137 2875
3) 231 4988
(O] 226 4886

2. trilinear prolongation at all stages of the FMG-FAS procedure;

3. piece-wise constant prolongation at all stages of the FMG-FAS procedure;

4. upwind piece-wise constant prolongationdiow, andw after the auxiliary stage, and
trilinear prolongation fomp and corrections.

The results using the above four variants are shown in Table Il. In this table the num
of multigrid sweeps (MG sweeps) on the fine-grid, required for steady state solution w
accuracy of 10° for the L,-norm of theu-residual, is shown. The number of work units
is also given to allow comparison of the efficiency between different multigrid variants. /
can be seen, the best results are obtained using the mixed-prolongation for velocities ¢
end of each auxiliary stage, combined with the trilinear interpolation for prolongating t
pressure and corrections from the coarse to the fine grid during the multigrid sweeps.

As mentioned in Section 3, in the “unsteady-type” multigrid the equations on the coars
grid are not solved up to the convergence, but a number of relaxation steps are perfort
The dependence of the multigrid convergence on the relaxation steps is shown in Table
The best performance is obtained for 100 relaxations, but the optimum number of relaxa
iterations is not possible to be defined in advance. Various numerical experiments perfor
in this study showed that 80 to 100 relaxation steps on the coarsest grid during the
cycles are sufficient to provide satisfactory convergence rates.

The effect of the pre- and postrelaxations has also been investigated and results
shown in Table IV. It is seen that multigrid is more efficient when only postrelaxations &
performed. This conclusion is also in agreement with previous investigations by de Zee
[30] for the case of linear problems.

The second case is the flow in a cubic cavity atRED00. No-slip boundary conditions
for all velocity components on the wall were employed. In addition, no-slip conditions we
used for they andw velocity components on the upper lid of the cavity. Calculations wer
performed for two cases with the finest grids,x381 x 31 and 47x 47 x 47, respectively.

TABLE 11l
Effects of the Coarse-Grid Iterations on
the MG Sweeps (Three-Level MG)

Veg MG sweeps Work units
100 105 2429
400 86 2447

30 210 4332
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TABLE IV
Effects of the Pre- and Postrelaxation Itera-
tions on the MG Sweeps and Total Work Units
(Three-Level MG; Grid 58 x 39 x 39)

V1 Vo MG sweeps Work units
0 15 105 2429

10 50 80 5521
5 10 188 2900

The streamlines in th& — y (z=0.5) andy — z (x =0.5) planes are shown in Fig. 10.
The convergence histories for the fine-grid case are shown in Fig. 11 and the work unit
summarized in Table V. For the fine-grid case, 86 MG sweeps are sufficient to provide
steady state solution. In this case acceleration of the convergence by a factor of abo
compared to the SG solution, was achieved. An investigation of the pre- and postrelax
iterations on the multigrid performance was carried out using the 31x 31 grid, and
the results are summarized in Table VI. It was found that 10 to 15 relaxation iterations
sufficient for an efficient multigrid solution. Results for the effects of the coarse-grid fur
tion (see Section 3.2) on the MG performance are also presented in Table VII. The re
indicate that the FAS-2 implementation offers a 15% to 20% reduction of the total w
units.

The last case is the three-dimensional flow a£R&0 in a 90 bend of 40x 40 mm cross
section. This flow case was experimentally studied by Humpétey. [31]. A schematic
of the flow geometry is shown in Fig. 12. The mean radius of the bend is 92 mm attac
to the end of rectangular channel. A straight extension section is attached upstream
bend entrance. The parameters of the experiment are such that the bend has a large ¢
turning angle and a small enough mean radius to generate severe distortion and a sign
secondary flow. The multigrid performance was investigated on two different grids.
first grid has 80 nodes in the streamwise direction, and 80 in the transverse plane, i.e.
a total 256,000 grid points. The second grid has 40 nodes in the streamwise ar2d 40

FIG. 10. Streamlines on the plangs= 0.5 (left) andz = 0.5 (right), for the grid 47x 47 x 47.
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FIG. 11. Convergence history for the cubic cavity flow (grid 4747 x 47).

FIG. 12. Schematic of the 90curved channel.
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TABLE V
MG Sweeps and Total Work Units for the
Cubic Cavity Flow (Three-Level MG)

Grid Method  Work units MG sweeps
47 x 47 x 47 MG 1935 86
MS 33600
SG ~62000
31x31x31 MG 1250 53
MS 4200
SG 8500

Note.Re = 1000.

TABLE VI
Effects of the Pre- and Postrelaxation Iterations on the
MG Sweeps and Total Work Units (Three-Level MG;
Cubic Cavity Flow, Grid 31 x 31 x 31)

V1 vy MG sweeps Work units
0 15 53 1250
10 15 75 2376
0 10 73 1510
0 20 46 1327
0 5 123 1352
TABLE VI

Effects of the FAS-1 and FAS-2 Implementa-
tion on the Total Work Units (Cubic Cavity Flow,
Grid 47 x 47 x 47)

Grid FAS-version Work units
47 x 47 x 47 FAS-1 2322
FAS-2 1935
31x31x 31 FAS-1 1438
FAS-2 1250
TABLE VIl

MG Sweeps and Total Work Units for the 3D Flow
in a Curved Channel (Three-Level MG)

Grid Method Work units MG sweeps
80 x 80 x 40 MG 2290 100
MS 33200
SG >70000
40 x 40x 20 MG 1294 62
MS 11000
SG 23000

Note.Re=790.
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FIG. 13. Comparison of the numerical (grid 8080 x 40) with experimental results [31]: (&)= 60° and
R=03; (b)¢ =60 andR=0.7; (c)6 = 90" andR = 0.3; (d)6 = 90° andR = 0.7.

the transverse plane. Computations were carried out using the half section of the duct ir
z-direction because of symmetry. As inflow conditions the corresponding developed fl
in a straight duct at Re 790 was imposed at the inlet.

In Fig. 13 comparisons of the present computations with the experimental results
[31] are shown. The comparisons are presented at two different radial loc&ier®3
andR=0.7, for angle® = 60° andd = 90°. TheR is defined byR= (R — Ry)/(R — Ry),
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FIG. 14. Formation of the secondary flow @&t= 90° (grid 80 x 80 x 40).

whereR; andR, are the inner and outer radius, respectively. The comparisons show tha
present predictions are in satisfactory agreement with the experimental results. In Fi
the formation of secondary flow at= 90° is shown.

Similarto the previous cases calculations were also carried out using the mesh-seque
and single-grid algorithms. The work units and MG sweeps are shown in Table VIII, ¢
the convergence histories are shown in Fig. 15. The MG algorithm offers a signific
acceleration of the convergence, especially in the case of the fine grid. Compared t
corresponding SG work units the acceleration factor is over 31 times. The SG comput:
was stopped when the convergence level had reached the value 13f compared to
the corresponding value of 10 for the MG solution. An acceleration factor of 14.5 is
achieved when the MG work units are compared with the corresponding ones for the
technique.

1
10 7k,
y Multigrid
i\ ---- Mesh—sequencing
10 7, —— Single—grid

MR

-6 ...H...l“..‘\“‘xl PRI B
10 7o° 20000 40000 60000
Work Units

FIG. 15. Convergence history for the 98urved channel case (grid 8080 x 40).
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5. CONCLUSIONS

A nonlinear full multigrid—full approximation storage algorithm was developed in cor
junction with the artificial compressibility formulation and a third-order upwind characteri:
tics-based method. The time integration was obtained by the fourth-stage Runge—K
scheme. The multigrid performance was investigated for various three-dimensional inc
pressible flows and validation of the method was performed on different grid sizes ug
256,000 grid points.

The results showed that the present multigrid algorithm offers a significant accelerat
of the computations in comparison with the single-grid and mesh-sequencing algorith
The effects of different prolongation operators on the multigrid performance were a
investigated. It was found that the prolongation operators may have significant effects
the multigrid acceleration. The best results were obtained by a combination mixbd-
prolongationfor the velocities at the end of each auxiliary stage, and trilinear prolongatic
for the pressure and corrections during the multigrid cycles. An investigation of the effe
of pre- and postrelaxation iterations on the multigrid performance was also carried out.
best results were obtained when pre-relaxation iterations were not performed. The optin
number of postrelaxation iterations is difficult to be estimated in advance. An increase
the postrelaxation iterations leads usually to a reduction of the MG sweeps, but also ir
increase of the total work units since the computational work per MG-sweep increases.
the other hand, several numerical experiments were performed during the developme
the present method and showed that 15 postrelaxation iterations are sufficient to pro
good convergence rates.

The coarse-grid iterations may also have a significant effect on the multigrid accelarat
Similar to the postrelaxation iterations, the optimum number of coarse-grid iterations ¢
not be estimated in advance. On the other hand, an increase of this number by a factor
or 4 will not lead to a significant increase of the total work units because these iterations
performed on the coarsest grid. The numerical experiments revealed that the definitio
the coarse-grid function in the FAS procedure can also affect the multigrid acceleratior
was shown that the definition of this function on the basis of coarse-grid solutions obtail
through the FMG procedure, improves the multigrid performance. Finally, the same c
cretization scheme was used at all grid levels and no problems were encountered conce
the numerical stability of the third-order upwind differencing.
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